
akellyirl.com

Reliable Frequency
Detection Using DSP
Techniques
6-7 minutes

 Accurate Frequency Detection is important for
many projects such as Guitar/Piano Tuners,
Vibration Analyzers, Heartrate Monitors, MEMs
Sensor Analysis and Laboratory Instruments.

There have been many fine examples of
projects that try to solve this problem, for
example: Arduino Frequency Detection by
amandaghassaei  and Arduino Frequency
Counter Library (instructables.com).But they all
use Time Domain techniques; analyzing the
signal for features such as : Zero-Crossings,
Peak Detection, Slope Detection etc..

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

1 of 11 Sun, 22 Nov 2020, 12:44 PM



Piano playing Middle-C

Synthesizer Playing Middle-C

Take a look at the Waveforms shown above.
One of them is recorded from a Piano playing
Middle-C (C4) . The other is from a Synthesizer
Playing Middle-C (C4). Clearly any good Time
Domain algorithm will work well with the Piano

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

2 of 11 Sun, 22 Nov 2020, 12:44 PM



waveform. But the Synthesizer waveform will
not be identifiable that way because its very
strong harmonic content makes the
fundamental frequency undiscernable . It looks
impossible to Identify the Frequency of this
signal.

It is possible.

Using the technique I’m going to show you it
was measured to be 259.91Hz … only 0.09Hz
away from an Exact Middle C Frequency of
260Hz.

You Will Need

You Will
Need

I used an Arduino because it will make a great
basis for building a Frequency Detector with
Analogue Input such as a Guitar Tuner or
Heartrate Monitor.But the principles apply to
any platform.

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

3 of 11 Sun, 22 Nov 2020, 12:44 PM



To demonstrate the principles I’m going to use
pre-recorded sound files captured as an array
in a .h file. So we won’t be needing any circuit
for the Arduino this time.

Autocorrelation

The trick we use to identify the frequency of a
noisy signal is well known in the Mathematical
World of  Digital Signal Processing (DSP), and
is based on some pretty fancy maths. But the
technique is not difficult to understand and
better still it’s super-easy to code. The core of it
is just 3 lines of code.

What we need to do is to change the original
signal into another one that highlights the
periodicity of the original signal. So if it is
indeed periodic, then that will stand out in the
new signal and then we can measure that in
the usual way using peak-detect or zero
crossing detect.

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

4 of 11 Sun, 22 Nov 2020, 12:44 PM



What’s the magic algorithm that does that?

It’s Autocorrelation.

Imagine your signal is contained in a window or
buffer. Now imagine you have an exact copy of
that window or buffer with a time delay.

What Autocorrelation does is to measure the
correlation (or similarity) between the signal
and its delayed copy each time the copy is
delayed by a sample period.

Autocorrelation

See the diagram. When the signal and the copy
have no delay they are very similar (i.e. highly
correlated) as shown in step 1, and therefore
the autocorrelation value for delay = 0 is
maximum.Step 2 shows that when the copy is
delayed significantly it doesn’t look similar to
the original in the overlapping area. Therefore
the autocorrelation value for this delay is small.

Step 3 shows that when the copy is delayed
even more the signal in the overlapping area is

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

5 of 11 Sun, 22 Nov 2020, 12:44 PM



very similar to the original because the signal is
periodic. Therefore the autocorrelation value for
this delay shows a peak.

We can see that the distance in time between
the maximum peak at the beginning and the
first peak afterwards must be equal to the
fundamental period of the waveform.

Now that we’ve emphasised the periodicity of
the signal by Autocorrelation we just need to
perform a Peak-Detect to measure the period.

Technically the “similarity” or correlation
between the signal and its delayed copy is the
sum of the product of the two signals.

For the technically minded all the details of
Autocorrelation can be found here:
http://en.wikipedia.org/wiki/Autocorrelation

Autocorrelation Code

The core of the Autocorrelation Code is very
short:

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

6 of 11 Sun, 22 Nov 2020, 12:44 PM



  

  for(i=0; i < len; i++)

  {

    sum = 0;

    for(k=0; k < len-i; k++) sum += 

(rawData[k]-128)*(rawData[k+i]-

128)/256;

  }

The data is in the rawData[] array. We subtract
128 from each value because it’s 8bit unsigned
and we require signed values.

The sum value is the result of each
autocorrelation calculation, i.e. each point of
the function. In order to save memory we don’t
save the output to an array. We’re going to
work on the individual sum values to find the
first peak and therefore calculate the period.

Sending the sum values out to be plotted, we
get the Autocorrelation function shown below.
Comparing to the original signal (also shown) it

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

7 of 11 Sun, 22 Nov 2020, 12:44 PM



is clear that there is periodicity in the original
signal and this has been clearly highlighted by
the Autocorrelation function.

Autocorrelation Result

Original Signal

Peak Detect

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

8 of 11 Sun, 22 Nov 2020, 12:44 PM



To detect the location of the first peak after the
maximum we use a simple peak detector coded
as a State Machine as follows:

    // Peak Detect State Machine

    if (pd_state == 2 && (sum-

sum_old) <=0) 

    {

      period = i;

      pd_state = 3;

    }

    if (pd_state == 1 && (sum > 

thresh) && (sum-sum_old) > 0) 

pd_state = 2;

    if (!i && pd_state == 0) {

      thresh = sum * 0.5;

      pd_state = 1;

    }

The state machine moves from one state to the
next when an event occurs as follows:

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

9 of 11 Sun, 22 Nov 2020, 12:44 PM



STATE0 : Set thresh the threshold under which
value we’ll ignore the data : NEW STATE = 1

STATE1 : look for the signal being above the
threshold AND the slope of the signal is
positive : NEW STATE = 2

STATE2 : look for  the slope of the signal is
negative or zero. If so we’ve found the PEAK!
: NEW STATE = 3

C4.h File

The C4.h File contains the buffer we’re
analysing.

You can fill that by reading a Block of Data from
the ADC in the Arduino.

Or you can generate the data from a program
such as Audacity.

The samples were taken from the extensive
collection captured by the University of Iowa
Electronic Music Studios.

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

10 of 11 Sun, 22 Nov 2020, 12:44 PM



Here’s all of the Code

You can get all the code over on GitHub

Reliable Frequency Detection Using DSP Techniques about:reader?url=http://www.akellyirl.com/reliable-frequency-d...

11 of 11 Sun, 22 Nov 2020, 12:44 PM


