
circuitdigest.com

Arduino Based Guitar
Tuner
9-11 minutes

Hi guys, during the last few weeks, I’ve been
working on reconnecting with my love for the
guitar. Playing the box guitar was how I relax
few years back before the saxophone took
over. Going back to the guitar, after 3 years of
rarely strumming a chord, I discovered amongst
other things that I no longer knew how each of
the string should sound, to put it in my friend’s
words, “My hearing was no longer tuned” and
as a result of this, I was not able to tune the
guitar without the aid of a keyboard or a mobile
app which I later downloaded. The weeks went
by till few days ago when the maker in me

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

1 of 19 Sun, 22 Nov 2020, 11:57 AM

became motivated and I decided to build an
Arduino based Guitar Tuner. In today’s
tutorial, I will be sharing how to build your own
DIY Arduino Guitar Tuner.

How Guitar Tuner Works

Before we move to the electronics, its important
to understand the principle behind the build.
There are 7 major musical notes denoted by
the alphabets; A, B, C, D, E, F, G and usually
end with another A which is always at an
octave higher than the first A. In music several
versions of these notes exists like the first A
and the last A. These notes are distinguished
each one from their variation and from one
another by one of the characteristics of sound
known as pitch. Pitch is defined as the
loudness or lowness of sound and its indicated
by the frequency of that sound. Since the
frequency of these notes are known, for us to
determine if the guitar is tuned or not, we only

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

2 of 19 Sun, 22 Nov 2020, 11:57 AM

need to compare the frequency of the note of
particular string to the actual frequency of the
note that the string represents.

The frequencies of the 7 musical notes are:

A = 27.50Hz

B = 30.87Hz

C = 16.35Hz

D = 18.35Hz

E = 20.60Hz

F = 21.83Hz

G = 24.50 Hz

Each variation of these notes is always at a
pitch equal to FxM where F is the frequency
and M is a non-zero integer. Thus for the last A
which as described earlier, is at an octave
higher than the first A, the frequency is;

27.50 x 2 = 55Hz.

The guitar (Lead/box guitar) usually has 6

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

3 of 19 Sun, 22 Nov 2020, 11:57 AM

strings denoted by the notes E, A, D, G, B, E
on open string. As usual, last E will be at an
octave higher than the first E. We will be
designing our guitar tuner to help tune the
guitar using the frequencies of these notes.

According to the standard guitar tuning, the
note and corresponding frequency of each
string is shown in the table below.

Strings Frequency Notation

1 (E) 329.63 Hz E4

2 (B) 246.94 Hz B3

3 (G) 196.00 Hz G3

4 (D) 146.83 Hz D3

5 (A) 110.00 Hz A2

6 (E) 82.41 Hz E2

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

4 of 19 Sun, 22 Nov 2020, 11:57 AM

The project flow is quite simple; we convert
the sound signal generated by the guitar to a
frequency then compare with the exact
frequency value of the string being tuned. The
guitarist is notified using an LED when the
value correlates.

The frequency detection/conversion involves 3
main stages;

1. Amplifying

2. Offsetting

3. Analog to Digital conversion(sampling)

The sound signal being produced will be too
weak for the Arduino’s ADC to recognize so we
need to amplify the signal. After amplification,
to keep the signal within the range recognizable

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

5 of 19 Sun, 22 Nov 2020, 11:57 AM

by the Arduino’s ADC to prevent clipping of the
signal, we offset the voltage of the signal. After
offsetting, the signal is then passed to the
Arduino ADC where it is sampled and the
frequency of that sound is obtained.

Required components

The following components are required to build
this project;

1. Arduino Uno x1

2. LM386 x1

3. Condenser Mic x1

4. Microphone / Audio jack x1

5. 10k potentiometer x1

6. O.1uf capacitor x2

7. 100ohms resistor x4

8. 10ohms resistor x1

9. 10uf capacitor x3

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

6 of 19 Sun, 22 Nov 2020, 11:57 AM

10. 5mm yellow LED x2

11. 5mm green LED x1

12. Normally Open Push Buttons x6

13. Jumper wires

14. Breadboard

Schematics

Connect the components as shown in the
Guitar Tuner Circuit Diagram below.

The push buttons are connected without pull
up/down resistors because the Arduino’s in
built pullup resistors will be used. This is to
ensure the circuit is as simple as possible.

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

7 of 19 Sun, 22 Nov 2020, 11:57 AM

Arduino Code for Guitar Tuner

The algorithm behind the code for this Guitar
Tuner Project is simple. To tune a particular
string, the guitarist selects the string by
pressing the corresponding pushbutton and
strums the plays an open string. The sound is
collected by the amplification stage and passed
on to the Arduino ADC. The frequency is
decoded and compared. When the input
frequency from the string is less than the

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

8 of 19 Sun, 22 Nov 2020, 11:57 AM

specified frequency, for that string one of the
yellow LEDs come on indicating that the string
should be tightened. When the measured
frequency is greater than the stipulated
frequency for that string, another LED comes
on. When the frequency is within the
stipulated range for that string the green
LED comes on to guide the guitarist.

Complete Arduino code is given at the end,
here we have briefly explained the important
parts of code.

We start by creating an array to hold the
switches.

int buttonarray[] = {13, 12, 11,

10, 9, 8}; // [E2, A2, D3, G3, B3,

E4]

Next, we create an array to hold the
corresponding frequency for each of the
strings.

float freqarray[] = {82.41, 110.00,

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

9 of 19 Sun, 22 Nov 2020, 11:57 AM

146.83, 196.00, 246.94,

329.63};//all in Hz

With this done, we then declare the pins to
which the LEDs are connected and other
variables that will be used for obtaining the
frequency from the ADC.

int lowerLed = 7;

int higherLed = 6;

int justRight = 5;

#define LENGTH 512

byte rawData[LENGTH];

int count;

Next is the void setup() function.

Here we start by enabling the internal pull up
on the Arduino for each of the pins to which the
switches is connected. After which we set the
pins to which the LEDs are connected as
outputs and launch the serial monitor to display
the data.

void setup()

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

10 of 19 Sun, 22 Nov 2020, 11:57 AM

{

 for (int i=0; i<=5; i++)

 {

 pinMode(buttonarray[i],

INPUT_PULLUP);

 }

 pinMode(lowerLed, OUTPUT);

 pinMode(higherLed, OUTPUT);

 pinMode(justRight, OUTPUT);

 Serial.begin(115200);

}

Next, is the void loop function, we implement
the frequency detection and comparison.

void loop(){

 if (count < LENGTH)

 {

 count++;

 rawData[count] =

analogRead(A0)>>2;

 }

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

11 of 19 Sun, 22 Nov 2020, 11:57 AM

 else {

 sum = 0;

 pd_state = 0;

 int period = 0;

 for(i=0; i < len; i++)

 {

 // Autocorrelation

 sum_old = sum;

 sum = 0;

 for(k=0; k < len-i; k++) sum

+= (rawData[k]-128)*(rawData[k+i]-

128)/256;

 // Serial.println(sum);

 // Peak Detect State Machine

 if (pd_state == 2 && (sum-

sum_old) <=0)

 {

 period = i;

 pd_state = 3;

 }

 if (pd_state == 1 && (sum >

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

12 of 19 Sun, 22 Nov 2020, 11:57 AM

thresh) && (sum-sum_old) > 0)

pd_state = 2;

 if (!i) {

 thresh = sum * 0.5;

 pd_state = 1;

 }

 }

 // Frequency identified in Hz

 if (thresh >100) {

 freq_per =

sample_freq/period;

 Serial.println(freq_per);

 for (int s=0; s<=5; s++)

 {

 if

(digitalRead(buttonarray[i])==

HIGH)

 {

 if (freq_per -

freqarray[i] < 0)

 {

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

13 of 19 Sun, 22 Nov 2020, 11:57 AM

 digitalWrite(lowerLed,

HIGH);

 }

 else if(freq_per -

freqarray[i] > 10)

 {

 digitalWrite(higherLed,

HIGH);

 }

 else

 {

 digitalWrite(justRight,

HIGH);

 }

 }

 }

 }

 count = 0;

 }

}

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

14 of 19 Sun, 22 Nov 2020, 11:57 AM

The complete code with a demonstration
video is given below. Upload the code to your
Arduino board and strum away.

Code

int buttonarray[] = {13, 12, 11, 10, 9, 8}; // [E2,
A2, D3, G3, B3, E4]
// each pin represents a guitar string
// next we create and array with frequencies
matching each of the strings above
// such that when 13 is selected the freq
matching the note e is selected).
float freqarray[] = {82.41, 110.00, 146.83,
196.00, 246.94, 329.63};//sll in Hz

int lowerLed = 7;
int higherLed = 6;
int justRight = 5;

#define LENGTH 512

byte rawData[LENGTH];
int count = 0;

// Sample Frequency in kHz

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

15 of 19 Sun, 22 Nov 2020, 11:57 AM

const float sample_freq = 8919;
int len = sizeof(rawData);
int i,k;
long sum, sum_old;
int thresh = 0;
float freq_per = 0;
byte pd_state = 0;

void setup(){
 for (int i=0; i<=5; i++)
 {
 pinMode(buttonarray[i], INPUT_PULLUP);
 }
 pinMode(lowerLed, OUTPUT);
 pinMode(higherLed, OUTPUT);
 pinMode(justRight, OUTPUT);
 Serial.begin(115200);
}
void loop(){

 if (count < LENGTH)
 {

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

16 of 19 Sun, 22 Nov 2020, 11:57 AM

 count++;
 rawData[count] = analogRead(A0)>>2;
 }
 else {
 sum = 0;
 pd_state = 0;
 int period = 0;
 for(i=0; i < len; i++)
 {
 // Autocorrelation
 sum_old = sum;
 sum = 0;
 for(k=0; k < len-i; k++) sum += (rawData[k]-
128)*(rawData[k+i]-128)/256;
 // Serial.println(sum);

 // Peak Detect State Machine
 if (pd_state == 2 && (sum-sum_old) <=0)
 {
 period = i;
 pd_state = 3;
 }

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

17 of 19 Sun, 22 Nov 2020, 11:57 AM

 if (pd_state == 1 && (sum > thresh) &&
(sum-sum_old) > 0) pd_state = 2;
 if (!i) {
 thresh = sum * 0.5;
 pd_state = 1;
 }
 }
 // Frequency identified in Hz
 if (thresh >100) {
 freq_per = sample_freq/period;
 Serial.println(freq_per);
 for (int s=0; s<=5; s++)
 {
 if (digitalRead(buttonarray[i])== HIGH)
 {
 if (freq_per - freqarray[i] < 0)
 {
 digitalWrite(lowerLed, HIGH);
 }
 else if(freq_per - freqarray[i] > 10)
 {

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

18 of 19 Sun, 22 Nov 2020, 11:57 AM

 digitalWrite(higherLed, HIGH);
 }
 else
 {
 digitalWrite(justRight, HIGH);
 }

 }
 }
 }
 count = 0;
 }
}

Arduino Based Guitar Tuner about:reader?url=https://circuitdigest.com/microcontroller-proj...

19 of 19 Sun, 22 Nov 2020, 11:57 AM

