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Abstract: The low- and mid-frequency model of the transformer with resistive load is analysed for different values of
coupling coefficients. The model comprising of coupling-dependent inductances is used to derive the following
characteristics: voltage gain, current gain, bandwidth, input impedance, and transformer efficiency. It is shown that in
the low- and mid-frequency range, the turns ratio between the windings is a strong function of the coupling coefficient,
i.e., if the coupling coefficient decreases, then the effective turns ratio reduces. A practical transformer was designed,
simulated, and tested. It was observed that the magnitudes of the voltage transfer function and current transfer
function exhibit a maximum value each at a different value of coupling coefficient. In addition, as the coupling
coefficient decreases, the transformer bandwidth also decreases. Furthermore, analytical expressions for the
transformer efficiency for resistive loads are derived and its variation with respect to frequency at different coupling
coefficients is investigated. It is shown that the transformer efficiency is maximum at any coupling coefficient if the
input resistance is equal to the load resistance. Experimental validation of the theoretical results was performed using
a practical transformer set-up. The theoretical predictions were found to be in good agreement with the experimental
results.
1 Introduction

Transformers are an integral part of many circuits used in various
applications [1–41]. The transformer constitutes the magnetic core
and the windings, whose linear or non-linear physical attributes
such as core resistance, winding resistance, leakage fluxes etc., are
frequency and temperature dependent [1–4]. As the transformers
are designed to operate at frequencies ranging from almost dc to
several megahertz, these physical attributes show dominance at
different ranges of frequencies. Also, the components such as
leakage inductances and the magnetising inductance show strong
dependence on the strength of the magnetic coupling between the
windings. Analysis of the effect of coupling coefficient on these
physical attributes is of great practical importance.

The behavioural model of the transformer is categorised as the
low-frequency model and the high-frequency model [5–20]. The
low-frequency model comprises of the magnetising inductance,
leakage inductances, and the dc resistances of the primary and
secondary windings. On the other hand, the high-frequency model
takes into account the parasitic capacitance of the transformer
windings, frequency-dependent permeability of the magnetic core,
and the frequency-dependent winding resistances. Achieving a
complete and an exact model of the transformer, which represents
all the low- and high-frequency effects is a challenge.

This paper derives the transfer functions pertaining to the low- and
mid-frequency models of the non-ideal transformer. The analysis
also forms a basis for understanding the high-frequency model of
the transformer. In this paper, frequencies from 10 Hz to 100 kHz
typically lie in the low- and mid-frequency regions, whereas
frequencies beyond 100 kHz usually are in the high-frequency region.

The objectives of this paper are as follows:

(i) to adopt the low- and mid-frequency model of the transformer
that includes the magnetising inductance, leakage inductances, and
dc winding resistances;
(ii) to derive the expressions for voltage transfer function, current
transfer function, input impedance, bandwidth (BW), and
transformer efficiency;
(iii) to analyse the transformer characteristics as functions of
frequency at different values of coupling coefficient;
(iv) to determine the maximum magnitudes of the voltage gain and
current gain and the BW of the transformer; and
(v) to determine the useful range of frequencies in which the
maximum power transfer takes place.

This paper is categorised as follows: Section 2 describes the low-
and mid-frequency models of the transformer that is considered in
this analysis. Section 3 presents the derivation of the transfer
functions such as the input impedance, voltage gain, and current
gain of the transformers in the frequency domain. Section 4
derives the expression for the efficiency of the transformer with
resistive loads. A practical transformer design is performed, the
presented theory is analysed, and experimental results are
presented in Section 5. Finally, Section 6 provides the conclusions
and suggests future work.
2 Equivalent model

2.1 Assumptions

The following assumptions are made in this paper, which are
applicable for the low- and mid-frequency analyses of the
transformers:

† The core resistance due to the core losses, which is in parallel to
the magnetising inductance is neglected in this analysis. It was
observed by the authors that the core resistance did not alter the
low-frequency characteristics, but increased the complexity in the
derivation of the gain and impedance expressions.
† The imaginary part of the complex permeability is negligible at
low frequencies. Therefore, only the real part of the complex
permeability is considered and the value of the effective
permeability is constant in the low- to mid-frequency range. The
validity of this assumption is discussed in Section 5.
† The effects due to fringing flux are neglected.
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† The winding resistances are frequency and temperature
independent.
† The parasitic capacitances of the transformer windings are
negligible.
† The transformer is loaded by a linear resistance.

2.2 Low- and mid-frequency equivalent models

Fig. 1a shows the circuit of a two-winding transformer, where Lp and
Ls represent the self-inductances of the primary and secondary
windings, respectively. Each winding is wound on one separate
part of the magnetic core. The coupling efficient k is varied by
changing the distance between the windings. Fig. 1b shows the
low- and mid-frequency model of the transformer depicted in
Fig. 1a [1]. The components rp and rs represent the winding dc
resistance of the primary and secondary windings, respectively.
The inductances Llp and Lls represent the leakage inductance of the
primary and secondary windings, respectively. The magnetising
inductance is considered on the primary.

The turns ratio of an ideal transformer is given by

n = Np

Ns
, (1)

where Np is the number of turns of the primary winding and Ns is the
number of turns of the secondary winding. Both halves of the core
are identical such that the area of the core cross-section is equal
and the mean magnetic path length of the primary and secondary
windings is also equal. Therefore, the mutual coupling between
the primary to secondary windings and vice versa are equal. The
mutual inductance between the primary and secondary is given by

M = k
�����
LpLs

√
, (2)

where k represents the coupling coefficient between the primary and
secondary windings or vice versa. The coupling coefficient depends
on the distance of separation between the two windings. The
self-inductance of the primary winding is given as

Lp =
mAcN

2
p

lc
, (3)

where Ac represents the cross-sectional area of the common flux in
the cores, lc is the mean path length of the magnetic flux linking
the primary and secondary windings, and μ = μ0 μr is the
permeability of the cores. Similarly, the self-inductance of the
Fig. 1 Circuit and model of a two-winding transformer

a Circuit
b Low-frequency and mid-frequency model
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secondary winding is given by

Ls =
mAcN

2
s

lc
. (4)

From Fig. 1b, it can be stated that the inductances Lp and Ls
constitute the ideal transformer and provides the required turns
ratio, whereas the magnetic energy is stored within the
magnetising inductance and both leakage inductances. The turns
ratio and the self-inductance of perfectly coupled windings (k = 1)
are related as

n =
���
Lp
Ls

√
. (5)

The magnetising inductance is expressed as

Lm = kLp =
kmAcN

2
p

lc
. (6)

In transformers with loosely coupled windings, the leakage flux is
significant and depends on the coupling between the two windings
and is modelled as leakage inductances. The leakage inductance
on the primary side is

Llp = (1− k)Lp =
(1− k)

k
Lm. (7)

Similarly, the leakage inductance on the secondary side is

Lls = (1− k)Ls =
(1− k)Lp

n2
= (1− k)

n2k
Lm, (8)

where Ls = Lp/n
2 and the inductance ratio is given in (5).
3 Input impedance, voltage gain, and current gain

In this section, the characteristics of the transformers such as input
impedance, voltage gain, and current gain of the non-ideal
transformer are analysed in the frequency domain. From Fig. 1b,
the components in the transformer can be lumped and expressed as
impedances given as follows

Zp = rp + jvLlp = rp + jv(1− k)Lp, (9)

Zm = jvLm = jvkLp, (10)

Zs = rs + jvLls = rs + jv(1− k)Ls. (11)

The load impedance can be purely resistive, purely reactive, or a
combination of resistance and reactance depending on the type of
application. The load impedance is expressed as

ZL = RL + jX , (12)

where RL represents the load resistance and X represents the load
reactance. The reactance X has a positive sign for inductive load
and a negative sign for capacitive load. In this paper, resistive
loads are considered (ZL = RL); however, the analysis can be
extended to reactive loads also.
3.1 Input impedance

Fig. 2a shows the equivalent model of the transformer with the
components on the secondary reflected to the primary. By
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inspection, the input impedance is

Zi = Zp +
n2Zm(Zs + ZL)

Zm + n2(Zs + ZL)
. (13)

Substituting (9)–(12) into (13) yields for ZL = RL

Zi = rp + sLlp +
sLmn

2(sLls + rs + RL)

sLm + n2(sLls + rs + RL)
. (14)

Modifying (14) results in

Zi = rp + sLlp +
n2LlsLm

n2Lls + Lm

( )
S{s+ [(rs + RL)/Lls]}

s+ [n2(rs + RL)/(n2Lls + Lm)]
.

(15)

The inductances in (15) can be expressed in terms of Lp, k, and n to
obtain the expression for the input impedance in general form as

Zi = rp + s(1− k)Lp + Zx
s s+ vz

( )
s+ vp

, (16)

where

Zx =
n2LlsLm

n2Lls + Lm
= k(1− k)Lp, (17)

vz =
vL

1− k
= (rs + RL)

Lls
= n2(rs + RL)

(1− k)Lp
, (18)

and

vp = vL = n2(rs + RL)

n2Lls + Lm
= n2(rs + RL)

Lp
. (19)

Furthermore, the input impedance in the complex form is

Zi = Re{Zi}+ jIm{Zi} = Ri + jXi, (20)

where Ri is the input resistance and Xi is the input reactance. The
Fig. 2 Equivalent circuits to determine the input impedance, current gain,
and voltage gain

a Model of the transformer to determine the input impedance Zi and the current gain Ai

b Model of the transformer to determine the voltage gain Av
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magnitude of the input impedance is

|Zi| =
����������
R2
i + X 2

i

√
, (21)

and the phase of the input impedance is

fZi
= tan−1 Xi

Ri

( )
. (22)

The real and imaginary components of the input impedance can be
extracted by substituting s = jω into (16). Thus, the input resistance
Ri is

Ri = rp −
Zx(vp − vz)

1+ vp/v
( )2 . (23)

The extremities of the input resistance Ri can be determined as
follows. At dc, ω = 0 such that ωp/ω =∞ resulting in

Ri = rp. (24)

At mid- and high-frequencies, as ω →∞, the term ωp/ω = 0 leading to

Ri = rp − Zx(vp − vz) = rp + (kn)2(rs + RL), (25)

indicating that the transformer input resistance at mid-frequencies is a
function of not only the turns ratio n, but also the coupling coefficient
k. As the coupling coefficient reduces, the input resistance also
reduces.

The input reactance is

Xi = vLlp + Zx
v3 + vvpvz

v2
p + v2

= v(1− k)Lp + Zxv
1+ (vpvz/v

2)

1+ vp/v
( )2 . (26)

The input inductance at any k is

Li =
Xi

v
= Lp(1− k)+ k(1− k)Lp

1+ {v2
p/[(1− k)v2]}

1+ vp/v
( )2

= Lp (1− k)+ k
1− k + vp/v

( )2
1+ vp/v

( )2
⎡
⎢⎣

⎤
⎥⎦. (27)

The input reactance at k = 1 is a special case, since the extremities of
the input reactance are different from those obtained for k < 1.
Substituting (17)–(19) into (26) and equating k to unity, we obtain

Xi =
Lpvv

2
p

v2 + v2
p
= vLp

1+ v/vp

( )2 . (28)

Thus, the input inductance at k = 1 is

Li =
Xi

v
= Lp

1+ v/vp

( )2 . (29)

At dc, ω = 0, and Xi in (28) is also equal to zero. As ω →∞, the
input reactance Xi→∞. However, by inspection, Xi approaches a
finite value, when ω ≃ ωp in the mid-frequency region. For any
other value of k < 1, the value of the input reactance can be found
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from (26), where at dc, Xi = 0 as ω = 0. As ω→∞, then Xi also
approaches infinity. The results of this theory are demonstrated in
Section 5.

3.2 Current gain

The equivalent model shown in Fig. 2a can be used to estimate the
current gain of the transformer. By inspection, the current gain is
given by

Ai =
io
ii
= nZm

Zm + n2(Zs + ZL)
. (30)

Substituting (10) and (11) into (30), the current gain in s-domain can
be expressed as

Ai =
nsLm

sLm + n2[rs + s(1− k)Ls + RL]

= knsLp
s[kLp + (1− k)Lp]+ n2(rs + RL)

, (31)

and in terms of Lp, we get

Ai = kn
s

s+ n2(rs + RL)

Lp

[ ] = Aix
s

s+ vL
, (32)

where Aix is the mid- and high-frequency gain given by

Aix = kn, (33)

and the lower-cut-off frequency is

vL = n2(rs + RL)

Lp
. (34)

Equation (32) represents the transfer function of a first-order
high-pass filter with a lower-cut-off frequency ωL and a gain Aix.
Substituting s = jω into (32), we obtain

Ai = Aix
jv

jv+ vL
= Aix

1− j(vL/v)
. (35)

Using ω = 2πf, the magnitude of the current gain can be expressed as

|Ai| =
Aix�������������

1+ fL/f
( )2√ , (36)

and the phase of the current gain is

fAi
= tan−1 fL

f

( )
. (37)

From (36), it can be observed that for f≃ 0, the current gain is ∼0.
Similarly, at f > fL, then for any k≤ 1

|Ai| = Ai(1) = Aix = kn. (38)
Av =

nsLm
n2(LlpLls + Lm

s2 + n2(rpLls + rsLlp + rsLm + RLLm + RLL

n2(LlpLls + LmLls)+ LmLlp

[
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In summary, for the perfectly coupled case where k = 1, (33) reduces to

Aix ≃ Ai ideal = n, (39)

and, in general, the expression in (33) can be used to determine the
current gain of the transformer for any value of k≤ 1. From (34), it
can be seen that the lower-cut-off frequency ωL determines the
range of frequencies, where a constant current conversion can be
achieved. For transformers with a lower value of k, the BW, where
the current gain is constant can be increased by adopting a
transformer with a higher turns ratio. This argument is true for
improving the magnitude of the current gain also.
3.3 Voltage gain

Fig. 2b shows the equivalent circuit to determine the voltage gain of
the non-ideal transformer. The voltage across the reflected load
impedance is

nvo =
ZL

ZL + Zs
vLm. (40)

Similarly, the voltage across the magnetising inductance is expressed as

vLm = Zm|| n2(Zs + ZL)
[ ]

Zp + Zm|| n2(Zs + ZL)
[ ] vi. (41)

Substituting (41) into (40), we get the non-ideal transformer voltage
gain as

Av =
vo
vi

= 1

n

ZL
ZL + Zs

( )
Zm|| n2(Zs + ZL)

[ ]
Zp + Zm|| n2(Zs + ZL)

[ ]
= nZLZm

n2(Zs + ZL)(Zp + Zm)+ ZpZm
. (42)

Substituting (9)–(12) into (42), we obtain the expression for the voltage
transfer function of the non-ideal transformer in terms of the circuit
components as (see (43))

yielding

Av =
knRL

Lp(1− k2)

s

s2 + rp + n2(rs + RL)

Lp(1− k2)
+ n2rp(rs + RL)

(1− k2)L2p

. (44)

The expression in (43) is a second-order transfer function of the
transformer for resistive loads due to the two independent
inductances. By expressing all the inductances in terms of Lp, the
voltage transfer function can be modified into the
standard-second-order form and is given by

Av = Avx
s

s2 + 2jv0s+ v2
0

, (45)

where Avx is the high-frequency voltage gain

Avx =
knRL

Lp(1− k2)
, (46)
RL

Lls)+ LmLlp

lp)+ rpLm
]
s+ n2rp(rs + RL)

n2(LlpLls + LmLls)+ LmLlp

, (43)
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Fig. 3 Transformer model and its equivalent gain stages

a Equivalent model of the transformer neglecting the winding dc resistances
b Representation of the voltage gain transfer function in the mid-frequency region in
terms of gain stages
the undamped natural frequency ω0 is

v0 =
n

Lp

������������
rp(rs + RL)

1− k2

√
, (47)

and the damping ratio j is

j = rp + n2(rs + RL)

2n
�����������������������
(1− k2)[rp(rs + RL)]

√ . (48)

The expression in (45) can be modified to obtain a transfer function
with well-separated real poles as

Av = Avx
s

s2 + (vLv + vHv)s+ vLvvHv
= Avx

s

(s+ vLv)(s+ vHv)
,

(49)

where ωLv and ωHv are the lower- and upper-cut-off frequencies of the
transformer voltage transfer function, respectively. Comparing (45)
with (49), 2jω0 =ωLv +ωHv and v0 = ���������

vLvvHv
√

. The expressions
for the cut-off frequencies in terms of j and ω0 can be determined as

vHv, vLv = 2p fHv, 2p fLv = jv0 + v0

�������
j2 − 1

√
, (50)

Substituting for ω0 and j in (47) and (48) into (50), we get (see (51))

Using the expressions for fHv and fLv, the transformer BW is

BW = fHv − fLv

=
��������������������������������������������������
[rp + n2(rs + RL)]

2 − 4n2(1− k)2[rp(rs + RL)]
√

2pLp(1− k2)
. (52)

For a perfectly coupled case, where k = 1, the BW is infinite. For any
other value of k < 1, the BW reduces with k. In a lossless
transformer, where rp = rs = 0, the lower-cut-off frequency fLv
approaches 0. The upper-cut-off frequency is

fHv =
n2RL

2pLp(1− k)2
, (53)

and the BW is BW≃ fHv. This indicates that the lower-cut-off
frequency is strongly dependent on the winding dc resistances,
whereas the upper-cut-off frequency and the BW are governed by
turns ratio n, load resistance RL, primary self-inductance Lp, and the
coupling coefficient k. Consider the standard-second-order transfer
function in (45). Substituting s = jω into (45), one obtains

Av = Avx
jv

(v2
0 − v2)+ j(2jv0v)

= Avx

2jv0 + jv0 (v/v0)− (v0/v)
( ) .

(54)

Further manipulation leads to

Av =
Avx

2jv0

1

1+ (j/2j) (v/v0)− (v0/v)
( )

= Av0

1+ (j/2j) (v/v0)− (v0/v)
( ) , (55)

where Av0 is the maximum voltage gain for the mid-frequency region
fHv, fLv =
rp + n2(rs + RL)+

����������
[rp + n2(r

√
4pL
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and is given as

Av0 =
Avx

2jv0
= knRL

rp + n2(rs + RL)
. (56)

The magnitude of the voltage gain is

|Av| =
Av0����������������������������������

1+ 1

4j2

( )
v

v0

( )
− v0

v

( )[ ]2√ , (57)

and the phase of the voltage gain is

fAv
= −tan−1 1

2j

v

v0
− v0

v

( )[ ]
. (58)

Thus, at v = v0 = ���������
vLvvHv

√
, the magnitude of the voltage gain

becomes

|Av| = Av0 =
knRL

rp + n2(rs + RL)
, (59)

whereas for ω→ 0 and ω→∞, the |Av| approaches zero. The
expressions for voltage gain in (45) and (59) are applicable for any
k≤ 1. Consider the case of an ideal transformer, where rp = rs = 0
and k = 1 such that Llp = Lls = 0 and Lm =∞, then (59) reduces to

|Av| ≃ Av0 = Av ideal =
1

n
. (60)

For any other value of k < 1, the inductances have a finite value. If
rp = rs = 0, then (59) reduces to

Av ≃ Av0 = kAv ideal =
k

n
, (61)

indicating that the effective voltage gain of the transformer is equal to a
fraction k of the voltage gain of the ideal transformer. Therefore, the
equivalent model of the transformer can be represented as a product
of the coupling coefficient and the turns ratio of the ideal transformer
and the effect is depicted in Fig. 3. This result is validated in Section 5.
����������������������������������������
s + RL)]

2 − 4n2(1− k)2[rp(rs + RL)]

p(1− k2)
. (51)
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4 Transformer efficiency

4.1 Transformer efficiency as a function of frequency

It is well known that the useful energy is accomplished using the real
power. Therefore, it is essential to deduce an equation for the
transformer efficiency to determine the effectiveness of power
transfer at different values of coupling coefficient. The real output
power of the transformer is

Po =
1

2
VomIom cos (fVo − fIo) =

1

2
VomIom cos (fZo). (62)

If the transformer is loaded by a resistance, then fZo = 0 and Vom =
IomRL. Thus, the output power is

Po =
1

2
(IomRL)Iom cos (0) = 1

2
I2omRL. (63)

Similarly, the real input power of the transformer is

Pi =
1

2
VimIim cos (fVi − fIi) =

1

2
Vim cos (fZi)Iim. (64)

In this case, the equivalent input voltage Vim cos(fZi) appears across
the real part of the input impedance Ri = Re(Zi) such that the input
voltage Vim cos(fZi) = IimRi. The value of the input resistance Ri

can be determined from (15). Thus, the real input power is
expressed as

Pi =
1

2
(IimRi)Iim = 1

2
I2imRi. (65)

The transformer efficiency ηt with resistive loads is the ratio of the
real output power in (63) to the real input power in (65) and is
given by

ht =
Po

Pi
= I2omRL

I2imRi

= A2
ix
RL

Ri
. (66)

where Aix = |Ai| is the magnitude of the current gain at
mid-frequencies and can be obtained from (32). By substituting for
Ri and Aix in (23) and (38), respectively, into (66), the transformer
efficiency as a function of frequency can be expressed as

ht =
(kn)2RL 1+ vp/v

( )2[ ]

rp 1+ vp/v
( )2[ ]

− Zx(vp − vz)
. (67)

As ω→∞, the term ωp/ω approaches zero resulting in the
transformer efficiency at mid-frequencies as

ht =
(kn)2RL

rp − Zx(vp − vz)
. (68)

Substituting for ωz and ωp in (18) and (19), respectively, into (68), we
get the mid-frequency transformer efficiency as

ht =
(kn)2RL

rp + (kn)2(rs + RL)
= 1

1+ (1/(kn)2)(rp/RL)+ (rs/RL)
. (69)

For example, at RL = 0.2 Ω, n = 1.4, rp = 0.02 Ω, and rs = 0.015 Ω,
the transformer efficiency is ηt = 0.888 at k = 1. However, as k is
reduced to 0.2, the efficiency is reduced to 0.4254. Thus, as the
coupling coefficient is lowered at a fixed load resistance, the
transformer efficiency also reduces drastically. The transformer
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efficiency is degraded as the value of the load resistance becomes
comparable with the winding dc resistances.

4.2 Transformer efficiency at mid-frequencies in terms
of power losses

An alternate approach to the above analysis to determine the
maximum efficiency at mid-frequencies is presented in this
section. If the power loss across the priming winding dc resistance
is Prp = I2imrp/2 and the power loss across the secondary winding
dc resistance is Prs = I2omrs/2, the total power loss in the two
winding dc resistances is

Pls =
I2imrp
2

+ I2omrs
2

. (70)

In terms of the power loss and the output power, the transformer
efficiency is

ht =
Po

Po + Pls
= 1

1+ (Pls/Po)
. (71)

Substituting (63) and (70) into (72), we obtain

ht =
1

1+ (I2imrp + I2omrs)/(I
2
omRL)

[ ]
= 1

1+ (1/A2
ix)(rp/RL)+ (rs/RL)

, (72)

where Aix = |Ai| = Iom/Iim. Substituting |Aix| = kn into (72), we get the
transformer efficiency as

ht =
1

1+ 1/(kn)2
[ ]

(rp/RL)+ (rs/RL)
. (73)

The expressions in (73) and (69) are identical and either may be used
to determine the maximum achievable efficiency. It can be seen from
(73) that under ideal circumstances, where k = 1, rp = rs = 0, the value
of ηt = 1. The transformer efficiency decreases significantly with
decreasing coupling coefficient. In addition, the efficiency also
reduces as the values of the load resistance and the dc winding
resistances become comparable. For example, at k = 0.5, n = 1.4,
rp = 0.02 Ω, and rs = 0.015 Ω, the transformer efficiency is ηt =
0.99 at RL = 20 Ω. However, as RL is decreased to 0.2 Ω, the
efficiency reduces to 0.84.
5 Results

This section analyses the expressions for the voltage gain, current
gain, input impedance, and the efficiency of the non-ideal
transformer derived in Sections 3 and 4 and provides the
simulation and experimental results.

5.1 Transformer design

To present the analysis, a transformer with the following
specifications was designed, simulated, built, and tested:

† Number of turns of primary winding Np = 14.
† Number of turns of secondary winding Ns = 10.
† Turn ratio n =Np/Ns = 1.4.
† Magnetic core – 0P43622UG (DS pot core).
† Relative permeability of the magnetic core material μrc = 2500.
† Core cross-sectional area Ac of each of the two core halves =
202 mm2.
† Mean magnetic path length lc = 53.2 mm.
† Mean turn length lT = 72.72 mm.
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† Primary and secondary windings wire – American Wire Gauge
(AWG)-18 with inner wire diameter dw = 1.02362 mm.

Detailed design procedure is provided in [1, 2, 31–42]. Using (3)
and (4), the primary and secondary self-inductances Lp and Ls are
determined as

Lp =
m0mrAcN

2
p

lc

= 4p× 10−7 × 2500× 202× 10−6 × 142

53.2× 10−3 H

= 2.337mH (74)

and

Ls =
m0mrAcN

2
s

lc

= 4p× 10−7 × 2500× 202× 10−6 × 102

53.2× 10−3 H

= 1.192mH (75)

The length of the primary winding wire lwp and the length of the
secondary winding wire lws, respectively, are

lwp = NplT = 14× 72.72× 10−3 m = 1018.08mm (76)

and

lws = NslT = 10× 72.72× 10−3 m = 727.2mm (77)

To accommodate the leads for the primary and secondary winding
wire connections, let lwp = 1030 mm and lws = 740 mm. Given that
the resistivity of copper (Cu) conductor is ρCu = 1.724 × 10−8 Ωm
at room temperature (T = 20°C) and the inner area of the AWG-18
Cu wire is Aw = pd2w/4 = 0.8225mm2. The dc and low-frequency
wire resistance of the primary winding is

rp =
rCulwp
Aw

= 1.724× 10−8 × 1030× 10−3

0.8225× 10−6 V = 21.6mV (78)

and the dc and low-frequency wire resistance of the secondary
winding is

rs =
rCulws
Aw

= 1.724× 10−8 × 740× 10−3

0.8225× 10−6 V = 15.51mV (79)

The load resistance is fixed at RL = 22 Ω. For these values, the input
impedance, current gain, and the voltage gain were analysed and the
results are presented in the subsequent sections.

5.2 SABER simulation results

For the given specifications, the transformer was built on SABER
circuit simulator using the Model Architect tool. It was assumed
that the permeability of the core material and the winding dc
resistance are frequency-independent, i.e. these parameters have
constant values up to the high-frequency region. The validity of
these assumptions is tested in this section using the Model
Architect tool. The Model Architect hosts a series of applications
including the tool for magnetic component characterisation
(MCC). The MCC tool is dedicated to the design of inductors and
transformers, to determine their magnetic and electrical properties,
to estimate power losses, impedances, and also contains the coil
geometry optimisation tool. In view of this work, the MCC is
capable of providing information about the effective relative
permeability, ac resistance, and core losses. The effective relative
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permeability μre is expressed as

mre =
mrc

1+ mrc(lg/lc)
, (80)

where lg is the length of the air gap. As shown in Fig. 4a, the value of
μre is constant up to 100 kHz and is equal to μrc = 2500. A reduction
in the value of the core permeability was observed at frequencies
beyond 1 MHz due to the ferromagnetic resonance phenomenon
within the core structure [1]. Since the frequency of interest in this
paper is <1 MHz, the assumption that the effect of the
permeability on the transfer functions is negligible is valid.

Similarly, the ac resistance Rac of the transformer was determined
through simulations and the plot of the input ac resistance as a
function of frequency is as shown in Fig. 4b. At dc ( f = 0), the
input resistance has a value approximately equal to rp = 20 mΩ.
Though the value of the resistance increases with frequency, it was
realised by the authors that the increment is small, when compared
with the value of the load resistance RL, and does not affect the
characteristics of the transfer functions, especially within the
frequency range of interest.

5.3 Theoretical results obtained using MATLAB

The plots for the variation in the input resistance for different values
of the coupling coefficient as a function of frequency are shown in
Fig. 5a. For k = 1, the input impedance is dominated by the input
resistance component. Thus, the input impedance increases from rp
to a value equal to rp + n2(rs + RL), which is in accordance with
(24) and (25). For any other value of k < 1, the maximum input
resistance can be obtained using (25). Fig. 5b shows the variation
in the input inductance as a function of frequency for different
values of the coupling coefficient. At dc, the input inductance Li
given in (29) is equal to the self-inductance Lp of the primary
winding for each value of the coupling coefficient. However, for
k≃ 1, as the frequency increases, the input inductance approaches
zero.

The plots for variations in the magnitude and phase of the input
impedance as a function of frequency for different values of the
coupling coefficient plotted using MATLAB are shown in Figs. 5c
and 5d, respectively. However, for k < 1, the input reactance in the
mid-frequency range dominates the input resistance. Thus, the
input impedance is inductive in the mid-frequency range and
beyond and is indicated in (26) and (28). The phase plot of the
input impedance illustrates the effect of (22). For k = 1, at dc, Xi =
0, resulting in fZi

= 0, whereas, when ω→∞, Ri > > Xi, leading
to fZi

= 0. For any other value of k < 1, fZi
is ∼90° throughout

the frequency range. At lower values of k, the reactance due to the
primary leakage inductance becomes stronger and its value
increases with frequency. Thus, a proper technique to nullify the
leakage inductance at lower k must be employed in order to
maximise the transfer of real power.

The plots for variations in the magnitude and phase of the current
gain as a function of frequency for different values of the coupling
coefficient plotted using MATLAB are shown in Figs. 6a and 6b,
respectively. Consider the case when k = 0.6. The magnitude plot
shows the characteristics of a high-pass filter with a maximum
current gain Aix and a lower-cut-off frequency fL = ωL/2π. The
values of Aix and ωL are derived in (33) and (34), respectively.
From the plot of the magnitude of the current gain, it can be
observed that the coupling coefficient has no effect on the
lower-cut-off frequency. In the mid-frequency range, i.e. f > fL,
using (38), it can be stated that the maximum current gain Aix is
no longer equal to simply n for any k < 1. Thus, if Ai ideal = n = 1.4
and k = 0.6, then the effective turns ratio is 1.4 × 0.6 = 0.84 or has
reduced by ∼60% of the ideal value. This value coincides with the
maximum value of Ai in Fig. 6a. Fig. 6b shows that the phase plot
for each of the coupling coefficient is the same. The transformer
offers a phase difference of 90° between the input and output
currents at low frequencies. For all frequencies beyond the
lower-cut-off frequency, the phase shift reduces to zero.
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Fig. 4 Variation in the effective relative permeability μre and the ac resistance Rac as a function of frequency obtained using SABER circuit simulator for the
non-ideal transformer under consideration

a Effective permeability as a function of frequency
b AC resistance as a function of frequency
The variations in the magnitude and phase of the voltage gain as a
function of frequency for different values of the coupling coefficient
are shown in Figs. 6c and 6d, respectively. The equation for the
voltage gain represents the characteristics of a second-order
band-pass filter with a lower-cut-off frequency fLv, upper-cut-off
frequency fHv, and a maximum gain Av0, whose expressions are
Fig. 5 Theoretically obtained plots of variations in the input resistance Ri, inpu
non-ideal transformer with change in frequency for different values of coupling co

a Input resistance as a function of frequency
b Input inductance as a function of frequency
c Magnitude of the input impedance |Zi| as a function of frequency
d Phase of the input impedance fZi

as a function of frequency
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provided in (51) and (56). These equations determine the
theoretical limits on the voltage gain and BW, which are
achievable for any value of the coupling coefficient. On knowing
these values, the transformer design can be optimised to ensure
that the operating frequency exists within the BW required for the
highest voltage gain. The lower-cut-off frequency is usually close
t inductance Li, and magnitude and phase of the input impedance Zi of the
efficient
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Fig. 6 Theoretically obtained plots of variations in the magnitude and phase of the current gain Ai and the voltage gain Av of the non-ideal transformer with
change in frequency for different values of coupling coefficient

a Magnitude of the current gain |Ai| as a function of frequency
b Phase of the current gain fAi

as a function of frequency
c Magnitude of the voltage gain |Av| as a function of frequency
d Phase of the voltage gain fAv

as a function of frequency
to zero and is dependent on the winding dc resistances, thus is not
considered as a major criterion. However, the upper-cut-off
frequency fHv determines the BW of the non-ideal transformer.
Assuming that the transformer is ideal, such that k = 1, rp = rs = 0,
then the voltage gain of the transformer is equal to Av ideal = 1/n =
0.7143. From Fig. 6c, for k = 0.6, the maximum value of the
voltage gain is Av0 = 0.4276 as opposed to the ideal value of
0.7143. Therefore, due to the low coupling coefficient, the
effective voltage gain is ∼60% or equal to k times the ideal value
Av ideal for frequencies up to the upper-cut-off frequency fHv = 4.24
kHz. This value for the BW coincides with that calculated using
(53). The phase of the voltage transfer function is 90° at
frequencies less than f0 = ω0/2π for any value of k. For k = 1, the
voltage drop across the leakage inductances is zero and the phase
is 0 at any frequency f ≥ f0. However, for any k < 1, the leakage
inductances are dominant at high-frequencies resulting in a − 90°
phase difference between the output and input voltages.

The efficiency of the transformer with resistive loads as given in
(67) is plotted as a function of frequency as shown in Fig. 7a. The
magnitude of the efficiency is lower than one for all values of
Ri > RL, where Ri is the input resistance of the transformer and RL

is the load resistance. However, for Ri = RL, then the efficiency
approaches unity indicating a maximum power transfer from the
source to the load. Fig. 7b shows the variation in the efficiency as a
function of the coupling coefficient at different load resistances for
n = 1.4. At lower values of load resistance, which are comparable
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with the values of the dc winding resistances, the transformer
efficiency at any coupling coefficient is also reduced due to higher
conduction losses. However, when the load resistance is higher than
the dc winding resistance, then transformer efficiency is low only at
lower values of k, but approaches unity as k→ 1.
5.4 Experimental results

For the given specifications, the transformer was constructed using the
cores and winding specified in Section 5.1. Fig. 8a shows the
photograph of the transformer, which was built and used for
measurements. A non-inductive resistor of value RL = 20 Ω was used.
The primary and secondary inductances were measured using the HP
4275A multi-frequency impedance meter. The self-inductance of the
primary winding Lp was 2.19 mH and the self-inductance of the
secondary winding Ls was 1.21 mH, when perfectly coupled. The
equivalent series resistances or the winding dc resistances at the
primary and secondary were measured as rp = 0.022 Ω and rs = 0.017
Ω, respectively. The experiment was first executed by adjusting the
gap to get a coupling coefficient of k = 0.98. The coupling coefficient
k for the transformer was calculated using [38]

k =
���������
1− Lp′

Lp

√
, (81)
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Fig. 8 Photograph of the experimental set-up and comparison of theoretical and experimental results for the magnitude of the voltage gain of the non-ideal
transformer

a Photograph of the transformer used for measurements
b Theoretical and experimental voltage gain at k = 0.98
c Theoretical and experimental voltage gain at k = 0.8
d Theoretical and experimental voltage gain at k = 0.55

Fig. 7 Theoretically obtained plots of variations in the transformer efficiency with change in frequency and coupling coefficient

a Variation in the transformer efficiency given in (66) for resistive loads with change in frequency for different values of coupling coefficient at RL = 22 Ω
b Variation in the mid-frequency transformer efficiency as a function of the coupling coefficient for different values of load resistance at n = 1.4
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where Lp′ represents the measured inductance at the primary when the
secondary winding is short circuited and Lp is the measured
inductance at the primary when the secondary winding is open
circuited. For an input voltage of 1 V, the output voltage was
measured at different frequencies between 10 Hz and 1 MHz.

Fig. 8b illustrates the comparison of the theoretical and
experimental results for the magnitude of the voltage gain Av of
the transformer at a coupling coefficient of k = 0.98. At low
frequencies, the values of the reactive components are low and the
parasitic resistance of the measurement components becomes
significant. Thus, a careful estimation of the probe and component
parasitics must be made. The two results were in accordance with
each other in the dc and mid-frequency range. Furthermore, the
transformer winding arrangement was adjusted to obtain lower
values of coupling coefficients. Again using (81), the new
coupling coefficient was found to be k≃ 0.8. The experiment was
repeated and the result is as shown in Fig. 8c. The results were in
fair agreement in the useful range of frequencies. Another set of
measurements were obtained for k≃ 0.55. The theoretically
predicted and experimental results matched very well at dc, low-,
and mid-frequencies. A deviation in the experimental results from
the theoretical predictions was observed at frequencies beyond 50
kHz at the three coupling coefficients. The following practical
reasons, which have been neglected in this analysis, could be
attributed for the mismatch at high-frequencies:

† The core and winding equivalent series resistances may become
significant at f > 50 kHz and cause the roll-off slope of the voltage
gain plot to decrease.
† The parasitics of the transformer such as turn-to-turn capacitance,
inter-winding capacitance, winding-to-core capacitance etc., alters
the shape of the voltage gain curve.
† The probe capacitance and the lead inductance of the load resistor.

6 Conclusion

In this paper, the closed-form expressions for the following
characteristics of a non-ideal transformer with a resistive load have
been derived as functions of frequency at different values of the
coupling coefficient: input impedance Zi, current gain Ai, voltage
gain Av, BW = fHv− fLv, and transformer efficiency ηt. The
magnetising inductance, leakage inductances, and dc resistances of
the primary and secondary windings have been taken into account.
The parasitic capacitances and the core resistance are neglected. A
general conclusion is that the coupling coefficient has a significant
effect on the input resistance, current gain, voltage gain, and the
transformer efficiency. The main conclusions drawn from the
analysis and experiments of this paper are as follows:

(i) The transformer input impedance Zi is governed by its input
resistance Ri and input inductance Li. For a transformer with a
fixed load resistance RL, as the frequency increases from zero, the
input resistance Ri increases from a minimum value rp to a
maximum value (kn)2(rs + RL), where k is the coupling coefficient,
and rp and rs are the primary and secondary windings dc
resistances, respectively. The input inductance Li is equal to the
self-inductance Lp of the primary winding at dc at any value of k,
while its value decreases with increase in frequency as given in
(29). At mid-frequencies, the input inductance approaches zero for
k = 1, while as k is reduced to zero, Li approaches Lp.
(ii) The current gain Ai of the non-ideal transformer is similar to the
transfer function of a first-order high-pass filter. As the frequency
increases from zero, the magnitude of the current gain |Ai|
increases from zero to kn.
(iii) The voltage gain Av resembles a second-order band-pass filter
transfer function for k < 1 and as a high-pass filter transfer function
for k = 1. The maximum value of the voltage gain Av0 given in
(59) is not only equal to 1/n, but is a function of the coupling
coefficient, dc winding resistances, and load resistance. For a
lossless transformer, the maximum value of voltage gain is
Av0≃ k/n.
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(iv) The lower-cut-off frequency fLv of the voltage gain Av is
dependent on the winding dc resistances and is ∼0 if the dc
resistances are small compared with RL. The upper-cut-off
frequency fHv of the voltage gain determines the BW and depends
primarily on the load resistance RL, primary self-inductance Lp,
and coupling coefficient k as given in (53). The transformer BW
decreases as the coupling coefficient is reduced.
(v) The expression for the transformer efficiency ηt as a function of
frequency for any value of k has been derived and is given in (67). As
the frequency increases from zero, the transformer efficiency ηt at
each coupling coefficient k also increases to a maximum value
given in (69).
(vi) The transformer efficiency ηt reduces with the coupling
coefficient. At mid-frequencies, the ηt decreases as the ratios rp/RL

or rs/RL increases and is determined in (73).

The design of a non-ideal transformer for practical specifications
has been presented. The theoretically obtained results have been
investigated using MATLAB and SABER simulation tools. A
laboratory set-up comprising of the designed transformer with a
facility to adjust the coupling coefficient has been built. The
experimental results have proved the validity of the theoretical
predictions over a wide range of test frequencies.

Future work in this regard constitutes the analysis of the
transformer in the presence of parasitic capacitance,
frequency-dependent magnetic permeability, and winding
resistances. The expressions provided in this paper can be used in
designing reactive compensation networks for a achieving
maximum power transfer.
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